Assessing the Economic Impact of U.S. Neutron Scattering Facilities

Amanda Walsh Senior Economist, Innovation Economics

www.rti.org RTI International is a trade name of Research Triangle Institute. RTI and the RTI logo are U.S. registered trademarks of Research Triangle Institute.

Assessment Details

RTI International leading

- Technical advising from Ayman Hawari at NC State University and Albert Link at UNC-Greensborro
- $_{\circ}$ Under funding from NIST
 - March 2021 February 2024
- Report dissemination expected in Winter 2023/24

Assessment Components

Surveys (N=247) and interviews (N=50) of users from NCNR and ORNL

- Facility use and outcomes, impacts of insufficient access, additional needs
- Analysis of research outputs: publications, patents, research networks
- Analysis of data on corporations using neutron scattering facilities
- Case studies of technologies influenced by neutron scattering
- Policy Assessments:
 - U.S. University neutron research reactors
 - Comparison of U.S. and international scattering policy and investment
- Compilation of economic impacts (to be added)

User-Reported Impacts of Insufficient Access (Pre-Facility Closures)

77% of survey respondents experienced issues due to insufficient access

- 25% either lost or under-utilized grant funds due to access-related research delays or abandonments
 - \$5,760,500 in aggregate
 - Hiring post-docs or PhD students who can't conduct planned research
 - Losing funds from inflexible sources (e.g., DOE)
- 32% reported research quality reductions
 - Depth of information gained from research reduced by 44% on average
 - Publication quality reduced by 39% on average
- 19% took research overseas

Common Issues Described in Surveys & Interviews

- Delays disincentivize students from pursuing scattering
- Over-subscription disincentivizes:

- Recruitment of new (especially corporate) users
- Acceptance of high-risk-high-reward research
- All reduces future pool of U.S. scattering researchers

Data on Corporate Use of Neutron Research Facilities

- Public records from NCNR, ORNL, Brookhaven, Argonne, and LANSCE
 - 372 U.S. based companies
- Pitchbook data on global employment
 - 265 companies with data
 - 398,500+ total employees
 - 45% SMEs (<250 employees)
- Pitchbook data on global revenue
 - 158 companies with data
 - \$3.2 trillion total revenue

Average Revenue and Employment in U.S. Sectors with the Most Frequent Neutron Scattering Facility Use

Sector	Top Using Industries	Average Revenue (\$M)	Average Employment
Energy	Exploration, Production and Refining; Energy Equipment	71,274	13,226
Consumer Products and Services	Automotive; Consumer Non-Durables	54,116	57,174
Healthcare	Pharmaceuticals and Biotechnology; Healthcare Devices and Supplies; Healthcare Services	15,492	21,196
Business Products and Services	Aerospace and Defense; Machinery; Other Business Products and Services; Construction and Engineering; Other Commercial Products; Industrial Supplies and Parts; Electrical Equipment; Other Commercial Services	13,514	18,989
Information Technology	Semiconductors; Computer Hardware; Software	8,587	10,048
Materials and Resources	Chemicals and Gases; Other Materials	7,995	6,172

Top Revenue and Employment Companies within 20 Industries with Highest Neutron Scattering Facility Usership

Companies with Highest Global Revenue

Company	Industry	Revenue (\$M)
Exxon Mobil	Energy Production and Refining	\$394,585
Chevron	Energy Production and Refining	\$232,245
Phillips 66	Energy Production and Refining	\$168,207
Ford	Automotive	\$165,055
General Motors	Automotive	\$160,740

Companies with Highest Global Employment

Company	Industry	Employment
Raytheon	Aerospace	182,000
Ford	Automotive	173,000
General Electric	Business Products and Services	172, 000
General Motors	Automotive	167,000
Boeing	Aerospace	156,000

Barriers to Increased Corporate Adoption

\circ Awareness

- Most U.S. neutron researchers gain exposure during graduate school
- Need improved recruitment for non-academic users (e.g., J-PARC)
- Accessibility
 - Oversubscription decreases success of new users through free application process
 - Application timelines also do not align with corporate needs
 - nSoft does streamline corporate access and subscription cost is reasonable
 - However, new users have unknown value proposition reluctant to pay for access

o Usability

- Neutron scattering sources are complicated to use
- Corporate users need more direct and intensive assistance throughout the entire process
 - Also increased instrument automation and improved data processing software
- e.g., ample staff on iMATERIA instrument at J-PARC dedicated to assisting corporate users

Case Studies of Key Technologies Influenced by Neutron Scattering

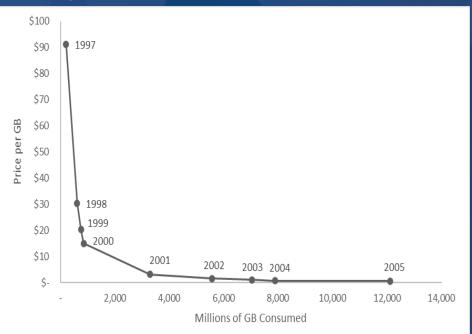
• Hard Drives

Polarized neutron reflectometry for GMR ¹⁻³

Aerospace Safety

- SANS for aviation fuel polymers ⁴⁻⁵
- Diffraction for identifying residual stress ⁶⁻⁸

Weight-Loss Drugs


• SANS to optimize drug delivery systems 9-11

Electric Vehicles

• Multiple methods for battery performance ¹²⁻¹³

Economic Impact of Hard Drive Advancements from 1997–2005

Long-Run Hard Drive Demand: 1997–2005

Consumption was calculated using data on annual shipments of computer storage devices from U.S. manufacturers¹⁴ plus computer storage device imports minus exports¹⁵ as well as the percentage of the global computer storage device industry that is held by hard drives¹⁶ and average hard drive prices¹⁷

 Consumer Surplus: Additional value consumers receive above and beyond the value reflected in the purchase price of a product

 Area under the demand curve above the equilibrium price and quantity

Increase in consumer surplus from 1997–2005: \$75 billion
\$9.5 billion per year on average

Neutron Research for Improved Aircraft Safety

Improved Technology & Innovation Fluid Efficiency: CalTech spinout

- Developed fuel additive to reduce or fully eliminate flammability⁴
- Polymer research done at NCNR¹⁸
- Non-destructive identification of micro-cracks in aircraft components
 - Enables manufacturers to reduce residual stress by improving materials, designs, or processes⁶⁻⁸
 - Research at ORNL, LANL, NCNR, ...

Impact Data Sources

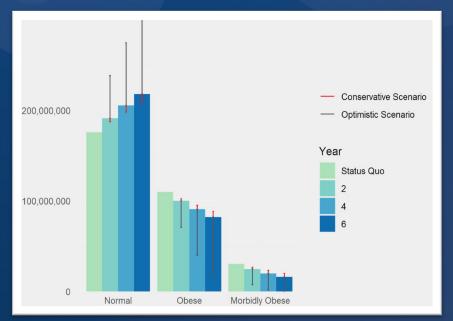
- National Transportation Safety Board Accident Data from 2008-2022¹⁹⁻²⁰
 - Annual aircraft incidents by type
 - Crashes with/without post-impact explosions
 - Aircraft structural failures
 - Number of casualties, injuries, and level of aircraft damage
- FAA Benefit-Cost Analysis²¹
 - Value of a statistical life (VSL)
 - Cost of aircraft damage and destruction

Total Estimated Costs Avoided by Eliminating Post-Crash Fuel Explosions in the United States from 2008 through 2022

	Sample of U.S. Aircraft Crashes without Post- Impact Explosions ¹⁹	All U.S. Aircraft Incidents <i>with</i> Post-Impact Explosions ²⁰	Counter- Factual Scenario without Post- Impact Explosions ^a
Total Incidents	8,522	34	34
Resulting in complete destruction of aircraft	1,108	26	4.4
	(13%)	(76%)	(13%)
Resulting in substantial	7,438	8	29.7
damage to aircraft	(87%)	(23%)	(87%)
Resulting in at least one casualty	2,301	32	9.2
	(27%)	(94%)	(27%)
Average casualties per incident	1.7	2.2	1.7
Resulting in at least one serious injury	1,125	3	4.5
	(13%)	(9%)	(13%)
Average serious injuries per incident	1.7	1	1.7

^a Calculation Methods: Proportions from the data on crashes without post-impact explosions were multiplied by the number of incidents which did result in a post-impact explosion (34) to produce the counterfactual results.

	Estimated Change in Incidents by Eliminating Post-Impact Explosions ^a	Average Estimated Cost Per Incident ²¹ (2021\$M)	Estimated Cost Avoided (2021\$M)
Casualties	-55.4	\$10.7 (\$6.0 – \$14.9)	\$592.8 (\$332.4 – \$825.5)
Serious Injuries	+4.7	\$2.7 (\$1.5 – \$3.8)	-\$12.7 (-\$7.1 – -\$17.9)
Planes Completely Destroyed	-21.7	\$18.6	\$401.8
Planes Substantially Damaged	+21.7	\$3.8	-\$82.5
Total Estimated Cost Avoided			\$899.4 (\$644.6 – \$1,126.9)
Average Cost Avoided per Year			\$60.0 (\$43.0 – \$75.1)


^a Calculation methods: These figures were calculated by subtracting the estimates for the counterfactual scenario in Table 1 from the actual values of these metrics based on the 34 incidents which resulted in a post-impact explosion.

Costs of Aircraft Structural Failure Incidents in the United States from 2008 through 2022

	Incidents Caused by Aircraft Structural Failure ²⁰	Average Estimated Cost Per Incident ²¹ (2021\$M)	Estimated Cost (2021\$M)
Incidents Requiring Investigation	191	\$0.9	\$171.9
Casualties	229	\$10.7 (\$6.0 – \$14.9)	\$2,450.3 (\$1,374.0 - \$3,412.1)
Serious Injuries	23	\$2.7 (\$1.5 - \$3.8)	\$62.1 (\$34.5 - \$87.4)
Planes Completely Destroyed	51	\$18.6	\$948.6
Planes Substantially Damaged	129	\$3.8	\$490.2
Total Estimated Cost			\$4,123.1 (\$3,019.2 – \$5,110.2)
Average Cost per Year			\$274.9 (\$201.3 – \$340.7)

SANS for Weight Loss Drug Development

Projected Distribution of U.S. Population among Weight Classes After 2 to 6 Years of Weight Loss Medication Use

Weight Class BMIs: Normal (18-29), Obese (30-39), Morbidly Obese (40 or greater) Projections based on modelling assumptions and baseline weight class distributions ²² Cumulative Discounted Medication Costs, Reduction in Obesity-Related Costs, and Net Cost Savings in 2022\$M.

	Cumulative Discounted Medication Costs	Cumulative Discounted Reduction in Obesity- Related Costs	Cumulative Net Cost Savings
2023	\$62,236.6	\$45,021.7	(\$17,214.9)
2028	\$358,158.0	\$478,408.4	\$120,250.5

Modelling Assumptions:

- 20% of Obese+ individuals take medication
- Medication reduces weight by 15% every 2 years ²³
- Annual medical costs attributable to obesity: \$2,881²⁴
- Annual cost of the weight loss drugs: \$2,214²⁵
- Annual discount rate for future economic impacts: 1.7%²⁶

Electric Vehicle Adoption

Modelling Assumptions:

- Improved EV battery technology leads to wider EV adoption
- Wider EV adoption increases auto manufacturer profits and reduces GHG tailpipe emissions
- Period of analysis: 2017 2028
- Use of neutron technology accounts for 0.5% of growth in EV adoption
- US car manufacturers' share of all new EVs sold in the US varies by year and ranges from 6% 78%
- Social cost of carbon is \$51
- Emissions avoided by use of an EV compared to an ICEV is 2.97 carbon tons/year

Cumulative Value of Increased Sales Revenues and GHG Emissions Avoided in 2022\$M.

	Cumulative Value of Additional Sales Revenue	Cumulative Value of GHG Emissions Avoided	Cumulative Total Value
2023	\$4.87	\$0.3	\$5.14
2028	\$45.13	\$2.97	\$48.1

Key Economic Take-Aways

- Case studies highlight substantial economic benefits from technologies enabled by neutron scattering research
- Hundreds of U.S. corporations rely on neutron scattering research facilities
 - Large-scale entities and SMEs
 - Insufficient facility investment has resulted in barriers to entry for corporate users
- User surveys and interviews show high costs of insufficient research capacity
 - Inefficient use of research time and grant funds
 - Reduced research ingenuity and quality

Last Steps

- Compile economic benefits and costs identified through case studies, user surveys, and corporate use data
- Project economic benefits and costs into the immediate future (through 2030)
 - Note: Longer-term modelling (20-30 years) is needed to capture the impacts of changes in neutron source investments
- Disseminate full report and individual components
 - Where would you expect to see this work?

Thank you

Contact: Amanda Walsh | email: awalsh@rti.org

References (1 of 2)

- Venkataramana, V. (2011). Neutrons to Probe Nanoscale Magnetism in Perpendicular Magnetic Recording Media [Doctoral Dissertation, University of St. Andrews]. Retrieved from https://reseDarch-repository.st-andrews.ac.uk/handle/10023/3187.
- 2. Pessoa Barradas, N. (2017, April 24). Uncovering the Magnetization of Nanolayers in Magnetic Devices. International Atomic Energy Agency.
- 3. Neutron Sciences Directorate. (2018). A History of Neutron Scattering at ORNL. Oak Ridge National Laboratory. Retrieved from https://neutrons.ornl.gov/content/history-neutron-scattering-ornl.
- Fluid Efficiency. (n.d.). MegaSupraMolecules. Retrieved from https://fluidefficiency.com/#fuel-safety.
- 5. Extance, A. (2015, October 1). Megasupramolecules Promise to Quell Fuel Explosions. ChemistryWorld. Retrieved from https://www.chemistryworld.com/news/megasupramolecules-promise-to-quell-fuel-explosions/9013.article.
- 6. League of European Neutron Sources Initiative. (2023). Neutron Diffraction Enables Wing Quality to Soar for Airbus. Retrieved from https://lensinitiative.org/2021/12/17/neutron-diffraction-enables-wing-quality-to-soar-for-airbus%E2%80%8B/.
- 7. Canadian Neutron Beam Centre. (2017). Boosting the Fuel Efficiency of Jet Engines. Canadian Institute for Neutron Scattering. Retrieved from https://cins.ca/2017/01/10/aero-3/.
- 8. Meissner, R., Rahn, A., & Wicke, K. (2021). Developing prescriptive maintenance strategies in the aviation industry based on a discrete-event simulation framework for post-prognostics decision making. Reliability Engineering & System Safety, 214, 107812.
- 9. Nugrahadi PP, Hinrichs WLJ, Frijlink HW, Schoneich C, Avanti C. Designing Formulation Strategies for Enhanced Stability of Therapeutic Peptides in Aqueous Solutions: A Review. Pharmaceutics. 2023;15(3).
- 10. Ford RR, Gilbert PH, Gillilan R, et al. Micelle Formation and Phase Separation of Poloxamer 188 and Preservative Molecules in Aqueous Solutions Studied by Small Angle X-ray Scattering. J Pharm Sci. 2023;112(3):731-739.
- 11. Gilbert PH, Zhang Z, Qian KK, Allen DP, Wagner NJ, Liu Y. Preservative Induced Polysorbate 80 Micelle Aggregation. J Pharm Sci. 2021;110(6):2395-2404.
- 12. Abitonze, Maurice, Xiaohan Yu, Catherine Sekyerebea Diko, Yimin Zhu, and Yan Yang. 2022. "Applications of In Situ Neutron-Based Techniques in Solid-State Lithium Batteries" Batteries 8, no. 12: 255. https://doi.org/10.3390/batteries8120255
- 13. Heiskanen, S. K., Kim, J., Lucht, B. L., 2019. Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries. Joule 3(10). https://doi.org/10.1016/j.joule.2019.08.018.

References (2 of 2)

- 14. U.S. Census Bureau (2023a). Manufacturers' Value of Shipments: Computer Storage Device Manufacturing [A34BVS]. Retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/A34BVS.
- 15. U.S. Census Bureau. (2023b). Monthly Full Report on Manufacturers' Shipments, Inventories, and Orders March 2023. Retrieved from https://www.census.gov/manufacturing/m3/prel/pdf/s-i-o.pdf.
- 16. U.S. Census Bureau. (2023c). USA Trade Online. Retrieved from https://usatrade.census.gov/data/Perspective60/View/dispview.aspx
- 17. McCallum, J. (2023). Disk Drive Prices 1955+ [Data set]. https://jcmit.net/diskprice.htm.
- 18. Dimeo, R., and Kline, S. (2016). 2016 NIST Center for Neutron Research Accomplishments and Opportunities. National Institute of Standards and Technology. Retrieved from https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1208.pdf.
- 19. National Transportation Safety Board. (2023). Accident Data. Retrieved from https://www.ntsb.gov/safety/data/Pages/Data_Stats.aspx.
- 20. National Transportation Safety Board. (n.d.). CAROL Query. Retrieved from https://data.ntsb.gov/carol-main-public/query-builder.
- 21. Federal Aviation Administration. (2022). Benefit-Cost Analysis. Retrieved from https://www.faa.gov/regulations_policies/policy_guidance/benefit_cost.
- 22. Silverman MP, Lipscombe TC. Exact Statistical Distribution of the Body Mass Index (BMI): Analysis and Experimental Confirmation. Open Journal of Statistics. 2022;12(03):324-356.
- 23. Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide Once Weekly for the Treatment of Obesity. N Engl J Med. 2022;387(3):205-216.
- 24. Cawley J, Biener A, Meyerhoefer C, et al. (2021). Direct medical costs of obesity in the United States and the most populous states. *Journal of managed care* & *specialty pharmacy*. 27(3):354-366.
- 25. CADTH. Pharmacoeconomic Review Report: Semaglutide (Ozempic). 2019.
- 26. OMB. Circular A-4. In:2023.